Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.» Энгельсский технологический институт (филиал) Кафедра «Естественные и математические науки»

РАБОЧАЯ ПРОГРАММА

по дисциплине

«Б.1.1.10 Органическая химия»

направления подготовки 18.03.01. «Химическая технология» Профиль «Нефтехимия».

форма обучения – заочная курс - 2семестр - 3,4зачетных единиц – 4+5 часов в неделю – 3+4 всего часов - 144+180 в том числе: лекции -6,6коллоквиумы –нет практические занятия – 2 лабораторные занятия – 8,6 самостоятельная работа – 130+166 зачет – 3 семестр экзамен – семестр 4 РГР –нет Контрольная работа – 3,4семестр курсовой проект -нет

Рабочая программа обсуждена на заседании кафедры
« <u>0</u> 7 » <i>шющ</i> 20 <u>21</u> года, протокол № <u>9</u>
И.о. зав. кафедрой/А.С. Мостовой/
Рабочая программа утверждена на заседании УМКН « <u>АЯ</u> » <u>Сиюня</u> 20 <u>21</u> года, протокол № <u>5</u>
Председатель УМКН/В.Н. Целуйкин/

1. Цели и задачи освоения дисциплины

Целью освоения дисциплины «**Органическая химия**» является приобретение студентами знаний и навыков, позволяющих применять их при освоении других дисциплин образовательного цикла и последующей профессиональной деятельности.

Для достижения этой цели преподавание дисциплины предполагает выполнить следующие задачи:

- 1.1 ознакомить студентов с основными понятиями, правилами и методами органической химии как науки, составляющей фундамент системы химических знаний;
- 1.2 способствовать формированию у студента обобщенных приемов исследовательской деятельности (постановка задачи, теоретическое обоснование и экспериментальная проверка ее решения), научного взгляда на мир в целом;
- 1.3 привить студенту химические навыки, необходимые для проведения органического синтеза, научить работать со справочной литературой;
- 1.4 развить у студентов профессиональное химическое мышление, чтобы будущий бакалавр смог переносить общие методы научной работы в работу по специальности;
- 1.5 обеспечить возможность овладения студентами совокупностью химических знаний и умений, соответствующих уровню бакалавра по соответствующему профилю;
- 1.6 научить владеть студентов правильным химическим языком, понимать специализированные термины органической химии.

Теоретическая часть дисциплины излагается в лекционном курсе. Полученные знания закрепляются на практических и лабораторных занятиях. Самостоятельная работа предусматривает работу с литературой во внеурочное время, подготовку к практическим и лабораторным занятиям, выполнение домашних заданий, подготовку к модульным работам и коллоквиумам, работу с лекционным материалом.

2. Место дисциплины в структуре ООП ВО

«Органическая химия» представляет собой дисциплину базовой (обязательной) математической и естественнонаучной части учебного цикла (Б.1.1) основной образовательной программы бакалавриата по направлению 18.03.01. «Химическая технология». Кроме того, «Органическая химия» относится к группе химических дисциплин математического и естественнонаучного цикла и изучается:

- после освоения курсов: «Общая и неорганическая химия», дающего базовые представления об основных законах, теориях и понятиях химии.
- перед изучением дисциплин «Аналитическая химия и физико-химические методы анализа», в рамках которого, приводятся начальные сведения о методах количественного анализа органических веществ, «Физическая химия», ряд разделов которых базируются на знании основ органической химии;
- перед изучением дисциплин «Коллоидная химия» и «Поверхностные явления в полимерных материалах», значительная часть которых связана с рассмотрением свойств органических веществ и их растворов.

Знания, полученные обучающимися при изучении «Органической химии», являются основой для последующего успешного освоения многих дисциплин профессионального цикла образовательной программы, например «Основы технологии ор-

ганических веществ», «Химия и физика полимеров», «Структура и свойства полимеров» и др.

3. Требования к результатам освоения дисциплины

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие культурные и профессиональные компетенции при освоении ООП ВО, реализующей Федеральный Государственный образовательный стандарт высшего образования (ФГОС ВО):

- способность планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-16)
- Готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире (ОПК-3)

В результате изучения дисциплины «Органическая химия» базовой (обязательной) математической и естественнонаучной части учебного цикла (Б.1.1) основной образовательной программы бакалавриата студент должен демонстрировать следующие результаты образования.

Обучающийся должен:

3.1. Знать:

- содержание теории строения органических веществ, составляющих теоретические основы органической химии как системы знаний о веществах и химических процессах
- органические вещества, встречающиеся в природе, и их роль в окружающей среде
- о природных источниках органических веществ и их рациональном использовании
- степень токсичности органических соединений, их действие на живые организмы 3.2. Уметь:
- анализировать логические цепочки «строение-свойства-применение органических веществ»;
- представлять механизмы химических реакций с участием органических соединений, протекающих в технологических процессах и в окружающем мире;
- предложить пути синтеза заданного органического вещества;

3.3. Владеть:

- практическими навыками тонкого органического синтеза;
- способностью использовать знания свойств органических соединений и материалов на их основе для решения задач профессиональной деятельности
- теоретическими методами описания свойств органических соединений на основе спектрального анализа элементов);
- экспериментальными методами определения физико-химических свойств органических соединений).

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

№	No	$N_{\underline{0}}$	Наименование темы Часы/из них в интерактивной формо					орме	
M	не	те		Всего	ЛЗ	К	ЛР	П	CPC
0	де	M				Л		P	
ду	ЛИ	Ы							
ЛЯ									
1	2	3	4	5	6	7	8	9	10
			3 семе	стр					
1		1	Теоретические представле-	31/1	1/1				30
			ния						
			в органической химии						
2		2	Гомологический ряд алканов,	34/2	2/2		2		30
			алкенов.						
3		3	Гомологический ряд алкинов	23/1	1/1		2		20
4		4	Гомологический ряд диенов	23/1	1/1		2		20
5		5	Ароматические углеводоро-	33/1	1/1		2		30
			ды						
BC	ЕГО			144/6	6/6		8		130
			4 семе	стр					
6		6	Галогенсодержащие органи-	33/2	2/2			1	30
			ческие соединения						
7		7	Кислородсодержащие орга-	46/2	2/2		3	1	40
			нические соединения						
8		8	Азотсодержащие органиче-	54/1	1/1		3		50
			ские соединения						
9		9	Элементы биоорганической	47/1	1/1				46
			химии						
BC	ЕГО			180/6	6/6		6	2	166

5. Содержание лекционного курса

No	Всего	№	Тема лекции. Вопросы, отрабатываемые на лек-	Учебно-
темы	часов	лекции	ции	методическое
				обеспечение
1	2	3	4	5
1	1	1	Предмет органической химии . Типы химической связи и их характеристика. Типы разрыва химических связей, промежуточные частицы, возникающие при этом. Индуктивный и мезомерный эффекты.	1,3,4,5
2,3,4	4	2,3,4	Гомологический ряд алканов, алкенов, алкинов, аренов, диенов. Номенклатура рациональная и систематическая. Строение молекул углеводородов, распределения электронов в атоме. Способы получения, химические свойства.	1,3,4,5,9
5	1	5	Арены. Номенклатура. Строение. Способы получения, химические свойства.	1,3,4,5,10,11
6	2	6	Галогенсодержащие органические вещества. Галогенпроизводные углеводородов. Классификация по типу гибридизации атома углерода, связанного с галогеном. Галогенпроизводные со связью $Csp^3 - X$ ($X = F$, Cl , Br , I). Классификация, номенклатура. Методы получения галогенпроизводных со связью $Csp^3 - X$. Различия в реагентах галогенирования. Прямое фторирование. Фреоны. Фторирующие вещества: HgF_2 , F_2 , SbF_3 , SbF_5 , CoF_3 и др. перфторалканы. Фторирование по методу Саймонса. Хлорирование и бромирование алканов. Механизм этих процессов, соотношение продуктов реакции.	2,3,4,6,8
7	2	7	Кислородсодержащие органические вещества. Общая характеристика кислородсодержащих соединений. Гидроксилпроизводные углеводородов. Общая характеристика спиртов. Классификация по атомности, степени насыщенности. Общая характеристика алканолов. Одноатомные предельные спирты. Номенклатура. Изомерия. Способы получения. Физические и химические свойства. Качественные реакции на спирты. Ненасыщенные спирты. Правило Эльтекова. Фенолы. Простые эфиры. Способы получения. Физические и химические свойства. Карбонильные соединения. Классификация карбонильных соединений. Альдегиды и кетоны. Карбоновые кислоты. Классификация по степени насыщенности и числу карбонильных групп. Номенклатура. Функциональные производные карбоновых кислот. Общая характеристика свойств.	2,3,4,6,8

8	1	8	Азотсодержащие органические соединения. Классификация азотсодержащих органических соединений. Нитросоединения. Способы получения. Нитрование алканов, бензола и его гомологов. Строение нитрогрупп. Ароматические нитросоединения. Способы получения. Амины. Классификация и номенклатура. Способы получения аминов со связью Csp³-NH ₂ . Диазо- и азосоединения. Способы получения диазосоединения. Способы получения диазосоединений	1-6,8,11
9	1	9	Элементы биоорганической химии. Углеводы. Моносахариды. Строение моноз Белки. Классификация белков. Строение белков. Применение белков. Белки как компоненты пищи. Ферменты. Классификация. Строение и механизм действия, роль ферментов в организме. Липиды. Классификация. Строение и химические свойства.	1-6

6. Содержание коллоквиумов

Не предусмотрены учебным планом

7. Перечень практических занятий

№ темы	Всего часов	№ занятия	Тема практического занятия. Задания, вопро- сы, отрабатываемые на практическом занятии	Учебно- методическое обес- печение
1	2	3	4	5
			4 семестр	
6	1	1	Галогенпроизводные алканов, алкенов, аренов. Способы получения. Химические свойства.	2-6,10
7	1	2	Кислородсодержащие органические соедине- ния . Спирты, альдегиды, кетоны, карбоновые ки- слоты. Способы получения. Химические свойст- ва.	2-6,11

8. Перечень лабораторных работ

No	Всего	Наименование лабораторной работы. Задания,	Учебно-
темы	часов	вопросы, отрабатываемые на лабораторном за-	методическое
		нятии	обеспечение
1	2	4	3
		3 семестр	
2	2	Лабораторная работа № 1. Очистка органических веществ	7,9
3	2	методом перегонки, идентификация веществ по Ткип. Лабораторная работа № 2. Очистка органических веществ методом перекристаллизации, идентификация соединений по Тпл.	7,10
4	2	Лабораторная работа № 3. Определение коэффициента замедления методом ТСХ о-, м-, п-нитроанилинов и азобензола.	7,10
		4 семестр	
5	2	Лабораторная работа № 1. Получение бензойной кислоты	8,10
7	3	Лабораторная работа № 2. Получение дибензальацетона	8,10
8	3	Лабораторная работа № 3. Синтез красителя n - нитроанилинового красного или очистка и идентификация белковых веществ (по выбору)	8,10

9. Задания для самостоятельной работы студентов

№ темы	Всего Часов	Задания, вопросы, для самостоятельного изучения (задания)	Учебно- методическое обеспечение
1	2	3	4
1	30	 Теория Бутлерова – основные положения. Классификация органических соединений. 	1-4,5
2,3,4	70	Углеводороды, номенклатура, изомерия, связь между классами органических соединений	1-4,5
5	30	Ароматические соединения. Правило Хюккеля. Правило ориентации в бензольном кольце.	1-4,5,10
6	30	Непредельные галогенпроизводные. Три типа непредельных галогенпроизводных. Способы получения и химические свойства аллильных и винильных галогенпроизводных.	2-6
7	40	Простые эфиры. Способы получения. Физические и химические свойства. Краун-эфиры: получение, свойства, применение. Хиноны, их классификация и номенклатура. Способы получения хинонов, физические и химические свойства. Реакции присоединения. Хиноны в диеновом синтезе.	2-6,10

8	50	Азосоединения и азокрасители. Классификация промышленных красителей. Методы крашения, применение.	2-6,10,11
9	46	Элементы биоорганической химии. Основные классы биоорганических соединений. Их классификация. Строение и механизм действия, роль в организме.	2-6, 10,11

Отчет по CPC проводится в виде реферативных докладов, также вопросы из CPC включены в экзаменационные билеты.

10. Расчетно-графическая работа

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине») Не предусмотрена

11. Курсовая (контрольная) работа

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине»)

Предусмотрены 2 контрольные работы, включающие в 3 семестре - 8 заданий, в 4 семестре – 9 заданий. Задания для контрольных работ выложены на сайте института. [12] [13]

- 12. Неверная О.Г. Органическая химия: учебно-методическое пособие к выполнению контрольной работы/О.Г. Неверная, Л.А. Рахметулина. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. 80 с. http://techn.sstu.ru/WebLib/33052.pdf
- 13. Неверная, О.Г. Дополнительные главы органической химии: учебнометодическое пособие к выполнению контрольной работы по дисциплине "Дополнительные главы органической химии" для студентов направлений 18.03.01 "Химическая технология" и 04.03.01 "Химия" заочной формы обучения /Неверная О.Г., Яковлев А.В., Мостовой А.С. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2020. 39 с. (2,44 печ. л.). ISBN 978-5-9907992-2-6 (Тираж 40 экз.).

Режим доступа: http://techn.sstu.ru/WebLib/35529.pdf

12. Курсовой проект

Темы, задания, учебно-методическое обеспечение (ссылки на раздел 15. «Перечень учебно-методического обеспечения для обучающихся по дисциплине») Не предусмотрен

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины Б.1.1.10 «Органическая химия» должны сформироваться компетенции ОПК-3 и ПК-16

Под компетенцией ОПК-3 понимается готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире. Для формирования данной компетенции необходимы базовые знания фундаментальных разделов химии, физики, математики. Формирования данной компетенции параллельно происходит в рамках учебных дисциплин

«Математика», «Информатика», «Физика». Зачет проводится в виде компьютерного тестирования. Шкала оценивания следующая.

Оценка «зачтено» ставится, если студент достаточно владеет материалом, дает правильный ответ на 35-100% тестовых заданий.

При оценке «не зачтено» студент не представляет достаточно убедительных знаний, не владеет материалом – отвечает менее чем на 35 % тестовых заданий.

Код компе	Этап форми-	Показатели оценивания	Критерии оцен	нивания	
тенции	рова ния				
ОПК-3	Ī	1.Знание ос-	Промежу-	Типовые задания	Шкала оцени-
	(3,4 ce-	новных	точная атте-		вания
	местр)	классов ор-	стация		
		ганических	Текущий	Проведение лабо-	3семестр
		веществ и	контроль в	раторных и прак-	зачет:
		основных	виде прове-	тических занятий	«Зачтено»,
		типов хими-	дения прак-		«Не зачтено».
		ческих реак-	тических за-	Вопросы и задачи	4 семестр
		ций.	нятий, вы-	контрольных ра-	экзамен:
		2. На осно-	полнения ла-	бот	«Отлично»,
		вании элек-	бораторных		«хорошо»,
		тронного	занятий, от-	Вопросы к экза-	«удовлетвори-
		строения	чета по кон-	мену	тельно», «не-
		умение оп-	трольным	Экзамен в виде	удовлетвори-
		ределять хи-	работам	компьютерного	тельно
		мические		тестирования	
		свойства со-	Экзамен в		
		единений,	виде компью		
		закономер-	терного		
		ности проте-	тестирова-		
		кания хими-	РИН		
		ческих про-			
		цессов и яв-			
		лений			

Под компетенцией ПК-16 понимается способность планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования. Для формирования данной компетенции необходимы базовые знания фундаментальных разделов химии, физики, математики. Формирования данной компетенции параллельно происходит в рамках учебных дисциплин «Математика», «Информатика», «Физика».

Код	Этап	Показатели оце-			
компе	форми-	нивания	Критерии оцени	ивания	
тенции	рова ния				
ПК-16	Ī	1.Знание основ-	Промежуточ-	Типовые за-	Шкала оценива-
	(3,4 ce-	ных способов	ная аттестация	дания	РИН
	местр)	проведение хи-	Текущий кон-	Проведение	3семестр
		мического экс-	троль в виде	практических	зачет:
		перимента	проведения	занятий	«Зачтено», «Не
		2. На основании	практических		зачтено».
		химического	занятий, вы-	Вопросы и за-	
		строения полу-	полнения ла-	дачи кон-	
		чаемых веществ	бораторных	трольных ра-	4семестр
		определять ис-	занятий, отче-	бот	экзамен:
		ходные реаген-	та по кон-		«Отлично»,
		ты.	трольным ра-	Вопросы к эк-	«хорошо»,
		3.Умение прово-	ботам	замену	удовлетвори-
		дить обработку			тельно», «не-
		результатов ор-		Экзамен в ви-	удовлетвори-
		ганического	Экзамен в ви-	де компью-	тельно
		синтеза.	де компью-	терного	
			терного тес-	тестирования	
			тирования		

Для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины Б.1.1.10 «Органическая химия», проводится промежуточная аттестация в виде зачета и экзамена. Процедура оценивания знаний, умений, навыков по дисциплине Б.1.1.10 «Органическая химия» включает выполнение лабораторных работ, самостоятельной работы, контрольных работ, тестовых заданий на зачете и экзамене. Лабораторные работы считаются успешно выполненными в случае предоставления в конце занятия отчета (протокола), включающего тему, ход работы, соответствующие расчёты, уравнения реакций и выводов по работе. Шкала оценивания – «зачтено / не зачтено». «Зачтено» за лабораторную работу ставится в случае, если она полностью правильно выполнена, при этом обучающимся показано свободное владение материалом по дисциплине. «Не зачтено» ставится в случае, если работа решена неправильно, тогда она возвращается студенту на доработку и затем вновь сдаётся на проверку преподавателю. В конце семестра студент сдает зачет в виде теста. Оценивание тестовых заданий проводится по принципу «зачтено» / «не зачтено». В качестве критериев оценивания используется количество правильных ответов. Самостоятельная работа считается успешно выполненной в случае успешного выполнения тестовых заданий. К зачету и экзамену по дисциплине студенты допускаются при предоставлении всех отчетов по всем лабораторным занятиям и успешном написании контрольных заданий.

Экзамен проводится в виде компьютерного тестирования. Шкала оценивания следующая. Оценка «отлично» ставится, если студент дает грамотный и обоснован-

ный ответ по существу поставленных вопросов, владеет материалом в полной мере – отвечает правильно на 80-100% тестовых заданий.

При оценке «**хорошо**» студент показывает глубокие знания по поставленным вопросам, владеет материалом достаточно – отвечает правильно на 60-79% тестовых заданий.

При оценке **«удовлетворительно»** студент не дает полного исчерпывающего ответа на поставленные вопросы, допускает отдельные неточности и погрешности при трактовке материала (владеет материалом недостаточно) — отвечает правильно на 35-59% тестовых заданий.

При оценке «**неудовлетворительно**» студент не представляет достаточно убедительных знаний, не владеет учебным материалом — отвечает менее чем на 35 % тестовых заданий.

Уровни освоения компонент компетенций в рамках дисциплины «Органическая химия»

Степени уровней освоения компетенции	Отличительные признаки
Пороговый	Знает: основные понятия и законы химии, основные классы органических соединений и их свойства Умеет: составлять уравнения химических реакций с заданным органическим веществом Владеет: способностью анализировать логические цепочки «строение-свойства органических веществ»
Продвинутый	Знает: органические вещества, встречающиеся в природе, и их роль в окружающей среде. Представляет степень токсичности органических соединений, их действие на живые организмы. Умеет: Представляет механизмы химических реакций с участием органических соединений, протекающих в технологических процессах и в окружающем мире Владеет: Может предложить метод определения физико-химических свойств заданного органического вещества
Высокий	Знает: обладает знаниями о природных источниках органических веществ и их рациональном использовании Умеет: использовать знание свойств органических соединений и материалов на их основе для решения задач профессиональной деятельности Владеет: способами обнаружения и иден-

тификации	органических	веществ	В	при-
родных и технических образцах				

Оценка уровня сформированности профессиональной компетенции

Профессиональная компетенция будет считаться сформированной на *пороговом* уровне при наличии правильных ответов по тестам от 45 до 60%.

Профессиональная компетенция будет считаться сформированной на *продвинутом* уровне при наличии правильных ответов по тестам от 61% до 80%.

Профессиональная компетенция будет считаться сформированной на *высоком* уровне при наличии правильных ответов по тестам более 80%.

Примеры типовых контрольных заданий для проведения промежуточной аттестации по итогам освоения дисциплины.

Компьютерный экзаменационный тест (1 часть)

1. Какой из приведенных радикалов обладает наибольшей устойчивостью?

2. Расположите в порядке возрастания констант диссоциации следующие кислоты: цианоуксусная (1) NCCH₂COOH;

β-цианопропионовая (2) NCCH₂CH₂COOH;

α-цианопропионовая (3) СН₃СНСNСООН;

уксусная (4) СН₃СООН;

пропионовая (5) СН₃СН₂СООН

- 3. Назовите основное соединение, которое образуется при бромировании пропана при нагревании и освещении.
- 4. Углеводород C_6H_{12} в условиях реакции Коновалова, превращается в третичное нитропроизводное. В ходе реакции получается только два изомера. Назовите исходный углеводород.
- 5. Найдите молекулярную формулу алкена, если 2,24~г. его присоединяет 3,20~г. брома.
- 6. Осуществите превращение и назовите конечные продукты А и В:

$$\frac{\text{Al}_2\text{O}_3}{300^0\text{C}}$$
 — $\frac{\text{Br}_2}{\text{C}_2\text{H}_5\text{OH}}$ — $\frac{\text{H}_2\text{O}}{\text{Hg}^{2+},\text{H}_2\text{SO}_4}$ **A+B**

- 7. Найдите ошибку в свойствах пропина.
 - 1. реагирует с пропаном
 - 2. реагирует с Br₂
 - 3. реагирует с аммиачным раствором Cu₂Cl₂ с образованием красного осадка
- 4. реагирует с водородом в присутствии [Ni]_p
- 5. реагирует с водой в кислой среде в присутствии Hg^{2+}
- 8. Установите строение соединения C_5H_8 , которое с аммиачным раствором оксида меди дает красный осадок, а при окислении $KMnO_4$ в кислой среде превращается в изомасляную кислоту.
- 9. Установите строение диенового углеводорода состава C_6H_{10} , если известно, что присоединяя один моль Br_2 он образует продукт состава $C_6H_{10}Br_2$, при озонолизе которого получается бромацетон —

- 10. Установите строение C_7H_{12} , озонолиз которого дает ацетон, малоновый альдегид и формальдегид.
- 11. Осуществите превращение и назовите конечный продукт А:

$$3 \text{ CH}_3 \longrightarrow \text{C} \longrightarrow \text{CH}_3 \xrightarrow{\text{H}_2 \text{SO}_4} \cdots \xrightarrow{\text{Br}_2} \cdots \xrightarrow{\text{Br}_2} \cdots \xrightarrow{\text{Br}_3} \cdots \xrightarrow{\text{efir}} \cdots \xrightarrow{\text{(CH}_3 \text{O})_2 \text{SO}_2} \text{A}$$

12. Какое минимальное количество стадий нужно провести, чтобы из бензола получить 4-нитробензойную кислоту.

Вопросы для зачета

- 1. Предмет органической химии. Краткий исторический обзор развития органической химии.
- 2. Сырьевые источники органических соединений (природный газ, нефть, каменный и бурый угли, сланцы, продукты сельского и лесного хозяйства).
- 3. Теоретические представления в органической химии. Структурные формулы. Теория химического строения. Изомерия.
- 4. Основы теории ковалентной связи. Характеристики ковалентной связи (энергия, длина связи, полярность, поляризуемость, валентный угол).
- 5. Энергетические уровни в атоме углерода. Орбитали. Гибридизация орбиталей. Природа σ -связи, sp^3 -гибридизация.
- 6. Природа двойной -C=C— связи. π -связь. sp^2 -гибридизация атома углерода. Природа тройной свзи -C=C— связи, sp-гибридизация атома углерода.
- 7. Перераспределение электронной плотности в молекуле. Образование промежуточных частиц: карбкатионов, карбанионов, радикалов.

- 8. Свободное вращение вокруг простой –С—С— связи. Конформации. Проекции Ньюмана. Конформационный анализ.
- 9. Факторы, определяющие реакционную способность органических молекул (поляризация и индуктивный эффект, поляризуемость и сопряжение, сверхсопряжение).
- 10. Основные понятия о реакционной способности органических соединений (направление, скорость реакций, механизм реакции, селективность, реакционный центр, переходное состояние, энергия активации).
- 11. Классификация химических реакций: а) по характеру химических превращений, б) по способу разрыва химических связей в молекуле
- 12. Типы реагентов в органической химии (нуклеофильные и электрофильные реагенты).
- 13. Классификация органических соединений.
- 14. Углеводороды. Классификация углеводородов.
- 15. Насыщенные углеводороды. Номенклатура. Изомерия. Способы получения алканов. Распространение алканов в природе. Моторное топливо.
- 16. Основные физические и химические свойства алканов.
- 17. Радикальное замещение в ряду алканов. Механизм галогенирования, нитрования, сульфохлорирования, сульфоокисления и т.д.
- 18. Относительная устойчивость алкильных радикалов.
- 19. Непредельные соединения. Классификация. Этиленовые углеводороды. Номенклатура. Названия непредельных радикалов.
- 20. Строение алкенов. Геометрическая изомерия. Установление конфигураций цис-, трансизомеров. Z, Е-изомерия. Старшинство заместителей по Кану-Ингольду-Прелогу.
- 21. Способы получения алкенов. Общая характеристика свойств алкенов.
- 22. Основные физические и химические свойства алкенов.
- 23. Реакции электрофильного присоединения по двойной –С=С— связи. Механизм электрофильного присоединения. Электрофильное галогенирование, гидрогалогенирование, присоединение воды, кислот и т.д. правило Марковникова.
- 24. Реакции радикального присоединения к алкенам. Перекисный эффект Хараша.
- 25. Окисление алкенов. Окислители: KMnO₄, OsO₄, H₂O₂, Cr₂O₃, O₃, Pb(CH3COO)₄, Tl(CH3COO)₃, PdCl₂, O₂/Ag, RCOOH.
- 26. Реакции изомеризации и алкилирования. Реакция Принса, оксосинтеза, окислительного аммонолиза.
- 27. Галоидирование в аллильное положение. Реакция Львова, бромирование бромсукцинимидом.
- 28. Полимеризация алкенов. Различные механизмы полимеризации.
- 29. Радикальная, анионная и катионная полимеризация.
- 30. Применение алкенов. Промышленный синтез на основе этилена.
- 31. Углеводороды с двумя этиленовыми связями. Классификация. Номенклатура. Строение.
- 33. Физические и химические свойства алленов.
- 32. 1,3-Алкадиены. Сопряжение. Способы получения.
- 33. основные физические и химические свойства 1,3-алкадиенов. Полимеризация диенов.
- 34. Синтетический и натуральный каучук.
- 35. Ацетиленовые углеводороды. Номенклатура. Строение. Способы получения.
- 36. Общая характеристика физических и химических свойств алкинов.
- 37. Реакции присоединения алкинов: галогенирование, гидрирование, гидратация, гидрогалогенирование и т.д. Механизм реакции Кучерова.
- 38. Окисление алкинов. окислительное сдваивание алкинов.
- 39. Реакции замещения водородных атомов в углеводородах с концевой тройной связью.
- 40. Реакции присоединения спиртов, синильной кислоты, уксусной кислоты. Реакции изомеризации и полимеризации.
- 41. Промышленный синтез на основе ацетилена.
- 42. Классификация ароматических углеводородов. Номенклатура. Название ароматических радикалов.
- 43. Основные способ получения ароматических углеводородов.
- 44. Строение бензола и ароматичность.

- 45. Основные физические и химические свойства ароматических углеводородов. Реакции присоединения, замещения, окисления. Реакции по боковой цепи.
- 46. Реакции электрофильного замещения в ароматическом ряду. Механизм электрофильного замещения
- 47. Электрофильное нитрование, ацилирование, алкилирование, сульфирование, меркурирование, галогенирование, таллирование, дейтерирование. Механизм этих реакций.
- 48. Теория ориентации при электрофильном замещении в ряду монозамещенных бензола. Классификация групп. Заместители I и II рода. Правила ориентации.
- 49. Распределение электронной плотности в субстрате в зависимости от наличия различных заместителей. Влияние индуктивного и мезомерного эффектов.
- 50. Относительная стабильность промежуточного σ-комплекса, изменяющейся в зависимости от природ заместителя. Влияние относительной устойчивости σ-комплекса на ориентацию при электрофильном замещении.

Экзаменационные вопросы

- 1. Галогенпроизводные углеводородов. Классификация по типу гибридизации атома углерода связанного с галогеном.
- 2. Галогенпроизводные со связью Csp³-X (X=F, Cl, Br, I). Классификация, номенклатура.
- 3. Методы получения галогенпроизводных со связью Csp³-X. Прямое галогенирование алканов.
- 4. Методы фторирования углеводородов. Получение фторалканов. Фторирующие средства: F₂, SbF₃, SbF₅, SF₄, CoF₃, HgF₂, KF. Фторирование по методу Саймонса. Фреоны. Перфторалканы.
- 5. Хлорирование и бромирование алканов. Механизм. Особенности хлорирования и бромирования высших алканов.
- 6. Получение галогенпроизводных при присоединении к кратным C=C, C≡C связям углеводородов. Механизм этих процессов.
- 7. Получение галогенпроизводных по реакции замещения гидроксильных групп и спиртов, карбонильного кислорода из альдегидов и кетонов и т.д. галогенирующие средства: PCl_5 , PCl_3 , $SOCl_2$, SF_4 и т.д.
- 8. Реакция Финкельштейна, Хунсдикера-Бородина. Получение йодпроизводных.
- 9. Основные физические и химические свойства галогепроизводных со связью Csp³-X.
- 10. Реакции нуклеофильного замещения в ряду галогенпроизводных со связью Csp³-X.
- 11. Механизмы мономолекулярного (S_{N1}) и бимолекулярного (S_{N2}) нуклеофильного замещения.
- 12. Пространственные изменения, происходящие при протекании S_N-реакций.
- 13. Факторы, влияющие на ход реакции нуклеофильного замещения (влияние структурных факторов, уходящей группы, нуклеофильного агента, растворителя и т.д).
- 14. Связь между типом замещения и продуктами реакции нуклеофильного замещения. Амбидентные анионы.
- 15. Галогепроизводные со связью Csp^2 -X. Классификация. Три типа непредельных галогенпроизводных. Способы получения галогенпроизводгых со связью Csp^3 -X.
- 16. Различие в реакционной способности непредельных галогенпроизводных с различным расположением двойной С=С связи.
- 17. Ароматические галогенпроизводные. Способы получения. Механизм электрофильного галогенирования в ядро. Механизм радикального замещения в боковую цепь.
- 18. Основные физические и химические свойства ароматических галогенпроизводных со связью $\mathrm{Csp}^2\text{-}\mathrm{X}.$
- 19. Реакции нуклеофильного замещения в активированных арилгалогенидах. Механизм
- 20. Механизм нуклеофильного замещения галогена в ароматическом ряду, включающий отщепление-присоединение.
- 21. Кислородсодержащие органические соединения. Общая характеристика кислородсодержащих органических соединений.
- 22. Гидроксилпроизводные углеводородов. Классификация по типу связей.
- 23. Общая характеристика алканолов. Номенклатура. Изомерия. Основные способы получения.
- 24. Основные физические и химические свойства алканолов. Физиологическое действие алканолов.

- 25. Реакция элиминирования. Мономолекулярное и бимолекулярное элиминирование. Механизм E_1 и E_2 . Взаимосвязь реакций S_N и E.
- 26. Двухатомные спирты (гликоли). Способы получения и основные химические свойства.
- 27. Трехатомные спирты. Глицерин, получение и основные химические свойства. Применение.
- 28. Простые эфиры. Номенклатура. Способы получения и основные физические и химические свойства. Применение.
- 29. Гидроксилпроизводные со связью Csp^2 -OH. Непредельные спирты. Правило Эльтекова-Эрленмейера. Эфиры непредельных спиртов.
- 30. Фенолы. Способы получения фенола. Общая характеристика химических свойств фенолов.
- 31. Основные физические и химические свойства фенолов. Применение.
- 32. Двухатомные фенолы. Способы получения и химические свойства. Применение.
- 33. Карбонильные соединения. Классификация карбонильных соединений.
- 34. Альдегиды и кетоны. Номенклатура. Основные способы получения альдегидов и кетонов.
- 35. Строение карбонильной группы. Сравнение карбонильной группы альдегидов и кетонов с двойной С=С связью. Физические свойства альдегидов и кетонов.
- 36. Реакционные центры альдегидов и кетонов. Общая характеристика химических свойств альдегидов и кетонов.
- 37. Реакции восстановления альдегидов и кетонов. Восстанавливающие агенты. Стереохимия восстановления. Правило Крама.
- 38. Реакции нуклеофильного присоединения по карбонильной группе. Механизм присоединения. Образование циангидринов, присоединение бисульфита натрия, образование ацеталей и полуацеталей.
- 39. Конденсация карбонильных соединений с соединениями типа R-NH₂. присоединение аммиака, гидроксиламина, гидразинов, аминов, семикарбазида. Влияние рН на ход этих реакций.
- 40. Окисление карбонильных соединений. Окисление альдегидов и кетонов. Особенности и различия этих реакций для альдегидов и кетонов. Реакции Толленса, Фелинга, Канниццаро. Реакции полимеризации альдегидов.
- 41. Галогенирование альдегидов и кетонов. Механизм галогенирования. Голоформная реакция.
- 42. Реакции конденсации альдегидов и кетонов с образованием С-С связей. Альдольная и кротоновая конденсации. Механизм этих конденсаций. Метилирование по Нефу.
- 43. Отличия альдегидов и кетонов. Применение альдегидов и кетонов.
- 44. Ароматические альдегидов и кетонов. Способы получения.
- 45. Основные химические свойства ароматических альдегидов.
- 46. Реакции конденсации ароматических альдегидов. Конденсации Кляйзена, Перкина, бензоиновая конденсация.
- 47. Ароматические кетоны. Способ получения и основные свойства.
- 48. Хиноны. Способы получения и основные химические свойства.
- 49. Карбоновые кислоты. Номенклатура. Общая характеристика карбоновых кислот. Способы получения.
- 50. Основные физические и химические свойства карбоновых кислот. Применение.
- 51. Двухосновные карбоновые кислоты. Способы получения. Номенклатура. Особенности дикарбоновых кислот в химических реакциях при нагревании.
- 52. Малоновая кислота и синтез на основе эфиров малоновой кислоты.
- 53. Функциональные производные карбоновых кислот. Общая характеристика. Основные способы получения.
- 54. Основные физические и химические свойства функциональных производных карбоновых кислот. Сложные эфиры, хлорангидриды, ангидриды, амиды и т.д.
- 55. Азотсодержащие органические соединения. Классификация, общая характеристика.
- 56. Нитросоединения. Классификация по гибридизации атома углерода, связанного с нитрогруппой (Csp^3-NO_2, Csp^2-NO_2) . Номенклатура.
- 57. Методы получения нитроалканов. Общая характеристика химических свойств. Строение нитрогруппы.
- 58. Основные физические и химические свойства нитроалканов. Восстановление нитроалканов, превращение нитроалканов в присутствии сильных минеральных кислот.

- 59. Кислотность нитроалканов. Реакции нитроалканов как С-Н кислот, реакции с азотистой кислотой, галогенами, формальдегидом и т.д.
- 60. Ароматические нитросоединения. Способы получения. Механизм нитрования в ядро и боковую цепь. Новые представления о механизме нитрования. Нирование через нитрозирование аминов и фенолов.

14. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающегося.

В рамках подготовки по дисциплине Органическая химия осуществляются следующие виды форм проведения занятий:

- 1. Лекционные занятия с использованием презентаций, выполненных в редакторе Microsoft Office PowerPoint 2010 и видеороликов.
- 2. Практические занятия с использованием презентаций, выполненных в редакторе Microsoft Office PowerPoint 2010 и видеороликов.
- 3. Лабораторные занятия с использованием материально-технической базы.
- 4. Занятия с привлечением студентов к разбору конкретных химических задач и ситуаций. *Программное обеспечение:* Microsoft Office PowerPoint 2010.

Тема занятия	Вид занятия	Интерактивная форма
1. Классификация органи-	Лекция	Метод проблемного изложения -
ческих соединений, основы		стимулирование студентов к само-
теории ковалентной связи,		стоятельному поиску знаний, не-
ее виды, образование про-		обходимых для решения конкрет-
межуточных частиц.		ной проблемы
2. Факторы, влияющие на		
реакционную способность		
органических молекул,		
3.Классификация органиче-		
ских реакций и типы реаген-		
тов в органической химии		
1. Электронные эффекты в	Произвидомо с поматило	Voya watau — ayaywa maguaway
органических веществах.	Практическое занятие	Кейс-метод – оценка предложенных алгоритмов и выбор лучшего в
Типы реакционных частиц и		контексте поставленной проблемы.
их относительная устойчи-		контексте поставленной проолемы.
вость. Изомерия.		
2. Теория ориентации в		
бензольном кольце.		
3. Взаимное влияние раз-		
личных функциональных		
групп в молекуле.		

В рамках учебного курса предусмотрено чтение лекций с применением мультимедийных технологий по всем темам (100 %).

Таким образом, обучение ведется с как помощью традиционных - пассивных методов - чтение лекций, проведение практических и лабораторных занятий, так и активных, в том числе интерактивных, больше предполагающих демократический стиль, основанный на субъект-субъектных отношениях между его участниками (обучающим и обучающимися). При чтении проблемных лекций и проведении практических занятий с разбором конкретных ситуаций образовательный процесс протекает таким образом, что практически все обучающиеся оказываются вовлеченными в процесс познания.

При этом следует учитывать, что кейс-метод в большей мере способствуют формированию таких компетенций, как умения выделять проблему и находить пути её решения, оценивать собственную деятельность, ответственность.

Такие занятия, в сочетании с внеаудиторной самостоятельной работой, должны формировать и развивать профессиональные навыки обучающегося.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

(позиции раздела нумеруются сквозной нумерацией и на них осуществляются ссылки из 5-13 разделов)

Основная

- 1. Травень В.Ф. Органическая химия: Учебник для вузов: в 2 т. / В.Ф. Травень. М.: ИКЦ «Академкнига» ,т. 1 (2008, 2006) 727 с. Экземпляры всего: 6
- 2. Травень В.Ф. Органическая химия: Учебник для вузов: в 2 т. / В.Ф. Травень. М.: ИКЦ «Академкнига» ,т. 2 (2008, 2006) 582с. Экземпляры всего: 6
- 3. Грандберг И.И. Органическая химия. М: Дрофа. 2013. 672 с. Экземпляры всего: 5
- 4. Титаренко А.И. Органическая химия [Электронный ресурс]: учебное пособие/ Титаренко А.И.— Электрон. текстовые данные.— Саратов: Ай Пи Эр Медиа, 2010.— с.— Режим доступа: http://www.iprbookshop.ru/731.— ЭБС «IPRbooks»

Дополнительная

5. Горленко В.А. Органическая химия. Часть 1, 2 [Электронный ресурс]: учебное пособие/ Горленко В.А., Кузнецова Л.В., Яныкина Е.А.— Электрон. текстовые данные.— М.: Прометей, Московский педагогический государственный университет, 2012.— 294 с.— Режим доступа: http://www.iprbookshop.ru/18592.— ЭБС «IPRbooks» 6. Горленко В.А. Органическая химия. Часть 3, 4 [Электронный ресурс]: учебное пособие/ Горленко В.А., Кузнецова Л.В., Яныкина Е.А.— Электрон. текстовые данные.— М.: Прометей, Московский педагогический государственный университет, 2012.— 414 с.— Режим доступа: http://www.iprbookshop.ru/18593.— ЭБС IPRbooks».

Методические указания

- 7. Целуйкин В.Н. Очистка и идентификация органических веществ: учеб. пособие / В.Н. Целуйкин, В.В. Чадина. Саратов: Сарат. гос. техн. ун-т, 2010. 70 с. Экземпляры всего: 41
- 8. Чадина В.В. Руководство к лабораторным занятиям по органической химии: учеб. пособие / В.В. Чадина, О.Г. Неверная, В.Н. Целуйкин. Саратов: Сарат. гос. техн. ун-т, 2010. 96 с. Экземпляры всего: 20
- 9. Чадина В.В. Алифатические углеводороды: учебн. пособие / В.В. Чадина, Т.В. Аниськова. Саратов: Сарат. гос. техн. ун-т, 2009, 100 с. Экземпляры всего: 45
- 10. Чадина В.В. Моноциклические ароматические углеводороды: учебное пособие/ Чадина В.В.. Неверная О.Г. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2014. 100 с. Экземпляры всего: 20
- 11. Чадина В.В. Сборник задач по органической химии. Часть І. Углеводороды: учеб. пособие / В.В. Чадина. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2014. 116 с. Экземпляры всего: 20

- 12. Неверная О.Г. Органическая химия: учебно-методическое пособие к выполнению контрольной работы/О.Г. Неверная, Л.А. Рахметулина. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2016. 80 с. Режим доступа: http://techn.sstu.ru/WebLib/33052.pdf
- 13. Неверная, О.Г. Дополнительные главы органической химии: учебнометодическое пособие к выполнению контрольной работы по дисциплине "Дополнительные главы органической химии" для студентов направлений 18.03.01 "Химическая технология" и 04.03.01 "Химия" заочной формы обучения /Неверная О.Г., Яковлев А.В., Мостовой А.С. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2020. 39 с. (2,44 печ. л.). ISBN 978-5-9907992-2-6 (Тираж 40 экз.).

Режим доступа: http://techn.sstu.ru/WebLib/35529.pdf

Интернет-ресурсы

Институт имеет операционные системы Windows, электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе.

- 1. www.chem.msu.su
- 2. http://www.chemistry.ssu.samara.ru

Источники ИОС

http://mail/new/SubjectFGOS/Default.aspx?kod=176

Органическая химия

16. Материально-техническое обеспечение

Кафедра ЕМН располагает лабораторией площадью 80 м² для чтения мультимедийных лекций (мультимедиа-проектор Acer x1261nV3D №210104700000057; настенный экран Lumien Master Picture № 410106200000066), проведения лабораторных, практических занятий, коллоквиумов по органической химии.

Информационное и учебно-методическое обеспечение

- 1. Мультимедийные приложения к лекциям, электронные варианты учебников и задачников.
- 2. Справочные
- таблицы: таблица химических элементов Д.И. Менделеева, растворимости веществ, значений стандартных потенциалов, термодинамических функций;
- плакаты, содержащие графическую информацию по порядку заполнения орбиталей

в атомах различных элементов, по способам и методам образования и стабилизации химической связи, по типам химической связи, гибридизации атомных орбиталей, по типам кристаллических решеток твердых веществ.

Для проведения лабораторных работ имеется следующее материальнотехнической обеспечение:

Оборудование.

Колбонагреватели: ESF-4100, ПЭ-0316; весы технохимические цифровые SCOUT SPU202; рефрактометр УРЛ лабораторный, универсальный с поверкой; прибор для определения температуры плавления ПТМ-4;

перегонные установки; прибор вакуумного фильтрования ПВФ-35/3Б, горелка Бунзена, термометры, сетка асбестированная. Сушилка лабораторная SUP-4 Водяная баня БКЛ.

Химическая посуда. Колбы круглодонные, холодильник прямоточный, стаканы химические, воронка Бюхнера, колба Бунзена, колба Вюрца, фильтр Шота, насадка Вюрца, аллонж, палочка стеклянная, капилляры, делительная воронка,

Реактивы. Толуол, спирт этиловый, натрия гидроксид, натрия бромид, натрия нитрит, кислота соляная, кислота серная, кальций хлористый, натрия хлорид, натрия гидрокарбонат, вода дистиллированная.

Рабочая программа по дисциплине «Б.1.1.10 Органическая химия» составлена в соответствии с требованиями Федерального Государственного образовательного стандарта ВО с учетом рекомендаций ПрОП ВО по направлению 18.03.01. «Химическая технология» и учебного плана по профилю подготовки «Нефтехимия»

Автор(ы): к.х.н. Неверная О.Г.